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Absolute instability of G rtler vortices on the severely curved concave pressure
side of a gas-turbine blade is the main thrust of the third-year work under this grant. For
the most part, the G rtler vortices have been investigated in an incompressible boundary
layer over thin-wing sections or artificial inserts on an otherwise flat plate. The cascade
of modern aircraft engines operate in the high subsonic Mach number regime with
velocity fields strongly affected by centrifugal forces maintained by the large curvature of
profiles. Unsteady spiral-type vortices developing in these environments provoke the
absolute instability in the streamwise direction of the boundary layer leading to earlier
transition. An effort undertaken after the meeting in Shalimar ( May 29-31, 2002 ) show
that the heat transfer coefficient is even more susceptible to enhancing oscillations in the
upstream moving wave packets than the pressure.

The essence of the matter

The shape of a blade in broad use in the modern gas-turbine engines is shown in
Figure 1. The concave pressure side is exposed to severe loading that can cause bad
damages (spallation of thermal barrier coatings). The large curvature of the concave
pressure side maintains centrifugal forces giving rise to G rtler vortices which make the
problem all the more acute. The interaction of Tollmien-Schlichting waves and unsteady
spiral-type vortical disturbances results in upstream-advancing wave packets that are at
the heart of absolute instability in the streamwise direction of the oncoming flow. This
kind of instability was discovered by Ryzhov (2001) in incompressible boundary layers
and recently proved by Ryzhov & Bogdanova-Ryzhova (2002) to exist in the high
subsonic Mach number regime. Surprisingly enough, temperature pulsations in the
upstream-moving wave packets appear to have even larger amplitude than the pressure if
the characteristic length of G rtler vortices grows without bound. The heat transfer
coefficient also increases with the vortex length ( Ryzhov & Bogdanova-Ryzhova, 2003).
The temperature disturbances are triggered by the pressure and velocity fields that need
to be evaluated first.

Conventional View of the G rtler instability mechanism

Typically, the G rtler vortices are thought of as steady disturbances having no
characteristic length in the streamwise direction ( Saric, 1994). Figure 2 illustrates this



conventional point of view under the tacit assumption of incompressible flow.
Theoretically, an appropriate representation of velocity components reads

La{x,y,z) = L(x,y) + d(y)eﬁx cos(27rz/l Z) (1a)
v(x,y,z) = V(x,y) + v’(y)eﬁx cos(21rz/k Z) (1b)
M(x,y,z) = w(y)” sin(21tz/kz) (1c)

Here, the real exponent B determines the disturbance amplification rate in the
streamwise direction, but there is no reference wavelength in this direction. The reference
wavelength, A _, is specified only in the spanwise direction. It can be shown that stability
properties of the boundary layer on a concave wall depend on a parameter

G =«Re )

called the G rtler number that incorporates the surface curvature « and the Reynolds
number Re>>1. A number of other parameters enter the problem posed for
compressible flow. The steady G rtler vortices do not disturb the boundary layer

upstream of an external agency.

Unsteady G rtler vortices

Unsteady spiral-type vortical disturbances have been recorded many years ago in
a related ( incompressible ) flow in a gap between two co-axial cylinders, one of which
rotates and the other is at rest. The spiral-type vortices create a wavy motion shown in
Figure 3 as applied to the problem of interest on the boundary layer developing on a
concave solid surface. Here A stands for the wavelength in the spanwise direction,
however a characteristic wavelength is clearly seen to form in the disturbance pattern also
in the direction of the oncoming stream.

The problem has been attacked theoretically by Denier, Hall & Seddougui (1991)
who identified five different regimes inherent in the high-Reynolds number flow. Starting
from the results of this paper, Choudhari, Hall & Streett (1994), arrived at a wrong
conclusion that no upstream influence results from the viscous / inviscid interaction
controlled by centrifugal forces. As a matter of fact, the first experimental evidence of
upstream influence exerted by the vortical disturbances on a concave surface can be
traced back to much earlier work by Mangalam, Dagenhart, Hepner & Meyers (1985).

An extended version of the triple-deck scheme

An asymptotic approach based on the assumption that the Reynolds number takes
on sufficiently large values is required to resolve this controversy. The triple-deck theory
offers a clue to start mathematical treatment. However, the classical version of the theory
is based on the scaling intrinsic to Tollmien-Schlichting waves ( Smith, 1979; Zhuk &
Ryzhov, 1980 ). Vortical eigenmodes are not covered by this scaling and therefore fall
beyond the Tollmien-Schlichting spectrum of frequencies. Neglect of centrifugal forces



maintained by the surface curvature is the decisive factor missing from the classical
triple-deck analysis of wave motion. Higher order terms have to be retained in the
asymptotic expansions to account for the curvature effects giving rise to G rtler vortical
eigenmodes. '

Guided by this preliminary consideration we introduce the time-space scaling

L*
t*=82l]* t,x*=L*(1+ s3x),z*=e3L*z €))

0

typical of the Tollmien-Schlichting spectral range fixed in terms of a small parameter

1
¢=Re 8 4)

for Re>> 1. The definition of the normal-to-wall distance depends on a specific

sublayer.
The Prandtl variable y, furnishes a pertinent scaling

Y=e'L*y, (5)

for most of the boundary layer where the desired functions have the following asymptotic
expansions

Z; =1 = Uo(y2)+ sz(t,x,yz,z)+...+e4uz4(t,x,y2,z)+... (62)
T s e o
g = s = 62wy, (6,303, 2) b5y (1235021 (60)
};*;—U{:z; R ﬁéle(’vxsysz)+---+84pza(t,x,y2,z)+ e 1o (6,%, 3, 2)4 . (6d)
E: = py = R(3)+ epan (63,2 et e oy (B33, 2) o | (6¢)

The initial velocity and density profiles in the unperturbed boundary layer on the

concave side of a blade are given by the leading-order terms Uo(yz) and R)(yz) in (6a)

and (6e), respectively. Logarithmic terms are not explicitly indicated since they have
nothing to do with the instability problem in question. The scaling of the velocity,
pressure and density fields comes from the classical triple-deck analysis providing the
opening stage of the present study.

Based on the ideas set forth at the beginning of this report, let us focus on the
pressure variations across the boundary layer which are balanced out by centrifugal




forces supported by the blade surface bending. Let pg") designate the contribution to the

pressure from the curvature effects. Then

pgK) = 84[1’§§)(x!y2)+ gpgi)(t, X,y2,2)+...] - (7)

According to the classical boundary-layer theory by Prandtl,

6p§“) K

R ®)
=-e% {R)(J’z)Ug(Jé)“L E[ZR)(J’Z)U()(J’2)"‘21(tsx’J’2,Z)+ Ug()’z)le(t,st’2’Z)]+"-}

Hence

30

:;2; = - R(3,) T (1) )

is the pressure gradient in the initially unperturbed flow and

(x)
aapZT:— - ‘K[2R)(J’2)U(3 (yz)un(t,x,yz,z)+ Ug(yz)pm(t,X,yz,Z)] (10

determines the self-induced pressure oscillations responsible for the boundary-layer
instability provoked by centrifugal forces.

To evaluate the last term giving the C(SS ) -contribution to the pressure we need

only the first-order solution for velocity components and density. This solution can be
explicitly expressed in the form

auj;
Uy, = A(z‘,x,z)-ag—}zo (11a)
a 3oy )
v = - —A—(g—fi)%(yz) (11b)
dwy, 0
I%(yz)l/a(yz)%= -% (11c)
Py = A(t,x,z)g& - (11d)

2

where —A(t,x,z) has a simple meaning of the instantaneous displacement thickness.
Using (11a,d), the self-induced pressure becomes




gy  daRU
b At,x,2) (12)

Integration of (12) allows the thermal conditions on the blade surface to be taken into
account when evaluating the heat-transfer-coefficient disturbances. The final result
implicitly depends on the Mach number involved in the velocity and density

distributions, Uo(yz) and R)(yz) , across the boundary layer.

Interaction law

As (12) shows, the self-induced pressure oscillations directly relate to the
instantaneous displacement thickness —A(t,x,z). The interaction law to connect these

two quantities derives from the study of the disturbance pattern in the outer, essentially
inviscid sublayer where the normal-to-wall distance is scaled as

W=e’L*y (13)

We start again with the asymptotic expansions

*

Zi = 14 = 1+ 224, (6,631, 2 ot 44 (6,230, 2) oo (14a)
(vjz = w = e 2y (6001, 2t e vy (X 2)t (14b)
;; = = s w62 et (62 (140)
f;—;- JRET SO W AN aa0
P o =14 e2011(6 231524 6%0 14 (6230, 2) o0 (14¢)
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characteristic of the Tollmien-Schlichting spectral range. In normalized variables

3
c(z;/ 1::)3{5@2} - (152)
1
p=(1- Aﬁ)'%éﬁp (15b)
) cg (z/ 2;;)%}1 | (15¢)

the first-order solution




lo 2 2
pul6x02)= -5 (1- M) [a | k)2t T (16)
7 [0 22) - o (- o]
incorporating an explicit dependence on the Mach number equally applies to flat as well
as curved surfaces. This should be supplemented with a term ¢ pfﬁ)(z‘, x,0, z) proportional

to the surface curvature k . Making use of the results of the preceding section yields an
extended version (Ryzhov, 2001; Ryzhov & Bogdanova-Ryzhova, 2002)

b=- ‘211;(1‘ J%)_% 76@ T az,i(t,g,g)/agz 7 + e DA (17a)
T 70 22) (-2 o) |
D= (1- 2t (12 Z)? (17b)

of the interaction law where A4, and

3
S=xRe ¢ D (18)

are two similarity parameters. It is worth noting that the generalized interaction law
consists of two components. The first term on the right-hand side of (17a) is associated
with the Tollmien-Schlichting waves, the second one relates to the spiral-type G rtler
vortices induced by centrifugal forces. Thus (17a,b) stem from the interaction of the
wave and vortex eigenmodes evolving on the concave pressure side of a turbine blade.

Final formulation

The interaction law (17a,b) defines both components 0p/0% and 8p/02 of the
pressure gradient in the Prandtl equations

o ov ow
65c+ a_jz+ P 0 (19a)

a—f—l+aﬁl+ ‘a—a+w—‘aa— éf—)+ Ot
0t " Yoz Vo Moz T ox 03P

ow oW aw 8w dp o'W

0w oW op 1
0t Yoz Voy T Vo T "oz o5 (19¢)

(19b)

ensuing from the system of original Navier-Stokes equations in the viscous near-wall
sublayer. This is a crucial simplification of the problem in the framework of the
asymptotic high-Reynolds number formulation based on rescaled normalized variables



L"‘t/*(f = 82(1— Aﬁ)_zr;EC%(];:/Z:)f ~ (202)

o T i

—= o1 22) 3 (T /L)y (206)
* 1

z‘; 7 } - o(1- 22 58C (2 2) ) (20c)

(‘;: = ¢%(1- Aﬁ)éricg(zj;/zj)%o (20d)

the notation being standard. The interaction law preserves the ellipticity of the original -
Navier-Stokes equations which brings about upstream influence. Mathematically, it is
just this property which underlies absolute instability in the streamwise direction. The
limit conditions

- 9 A2,%2), re il I S ‘ (21a,b)

complete the asymptotic formulation for Re>> 1.

A comparison of classical and interactive approaches

The G rtler number defined in (2) gives the similarity parameter for
incompressible flow in the scope of classical hydrodynamic stability theory. The skin

friction 1,,varies along the vortex length. The interactive boundary layer scheme predicts
a different similarity parameter

3 1 5 3 3

S=xRe 8(1- M3, 2C(T,/T))? 22)

3
depending on k Re ? rather than x Re and involving a combination of the Mach number
M, , characteristic skin friction t,,, Chapman viscosity constant C and temperature

ratio I,’:,/ Z]: All these additional parameters should be considered separately in the
classical approach rendering computed results hardly conceivable. Thus, both the scaling
and similarity parameters prove to be quite different. Hence, the unsteady spiral-type
vortices are not an extension of the classical G rtler vortex structures, rather they are of a
mixed wave / vortex character deriving from the Tollmien- Schlichting eigenmode
spectrum.



Linear approximation

The theory exposed describes essentially nonlinear motion. When turning to
stability problems, we may linearize the system of governing equations by putting

(- 50w A) = o (27,705, 4) (23)

and applying the Laplace-double Fourier transform

[ﬁc(m ,k,y,m),...,zc((o ,k,m)]

= = - | (24
= [ j [erlotvitine) [7,3%:3,2)s000r A2, 2,2)
-0 - 0

Upon solving the system of resulting ordinary differential equations the dispersion
relation (Ryzhov, 2001; Ryzhov & Bogdanova-Ryzhova, 2002)

2

0(Q)= dkmM,exD), Q=i ok

2
3 (25a,b)

fo connect the frequency o with two wavenumbers k,mcomes into play. Here
dA{(Q) .
0(Q)=—[#0)] (26)

is a standard function depending on the first derivative dAi(Q)/dY and an improper
integral

10)- ZAzde @

of the Airy function 44 ¥). The arguments of

1k2+m2 K ;
O= 13 3 T+exD (28)

[#+ (- 22)" 2]

are expressed through both wavenumbers and do not contain the frequency.

Spectral side band

The dispersion relation (25a,b) is cast in the form based on the scaling intrinsic to
the Tollmien-Schlichting wave spectrum. However, the two terms in curled brackets on
the right-hand side of (28) are of different nature. While the first term is associated with



the wave motion and gives leading-order contribution, the second term originates from
the curvature effects and brings ds:’) -correction in the Tollmien-Schlichting range of

spectrum. Evidently, a side band of frequencies and wavenumbers should emerge from
the interaction of the wave and vortex eigenmodes where they would exert an equal
impact on the disturbance pattern. This requirement defines the spectral interval

(] 2 3 2

0=¢7(kD70 ;= Re B(xkD70 5~ 025 4 (292)
El 3 3 3

k=+¢7(xD7 kg = Re %(xD)7kg~ 012k , (29b)
3 1 3 1

m=¢ (kD)7 mg=Re%*(x D)7 mg~ 2.0mg (29¢)

of the spiral-type G rtler vortices for typical transition conditions in an incompressible
boundary layer with Re ~5-10°.

The auxiliary variable Q and, hence, ®(Q) are invariants and the affine
transformation (29a-c) but Q and D change to

1
0,= 7 DG’%; g ks +1 (30a)
2 [Doké +(1- Aﬁ)’lmg]z
3
D.=Re’’ (Kgg (30b)

with both terms in curled brackets on the right-hand side of (30a) becoming of equal
order in magnitude. Thus, in accord with the above conjecture a low-frequency side band
comes about from the wave / vortex interaction.

Group velocities

The centrifugal force effects on the overall system of pulsations can be perceived
from a comparison of the first dispersion curves in the plane of complex frequencies.
Figure 4 drawn with positive values of % is typical of the subsonic boundary layer on a
flat plate. The first dispersion curve consists of a single lobe starting at infinity as £ - «
and terminating in the origin with k- 0. The shape of the first dispersion curves in the
plane of complex G rtler frequencies shown in Figure 5 for m; = 0.5 and three values of
the Mach number is different. The formation of two lobes connected through a small loop

on top is a common feature of all three plots. On theoretical grounds, the prediction of the
behavior of disturbances associated with the unusual two-lobe shape of the first



dispersion curve leans upon the general physical concept of the group velocity (Landau &
Lifshitz, 1959). The location of the global and local maxima of the real part R (m Gl) of

the complex frequency in the o ;-plane is of special significance. The global maximum

of R (co Gl) on the right-hand lobe, a counterpart of that in Figure 4, is responsible for the

generation of short-scaled oscillation cycles in the wave packet sweeping downstream.
The wave packets of this type underlie the conventional road to transition provoked by
convective instability. A tiny positive peak of % (o) Gl) in the upper portion of the loops

in the shape of the first dispersion curves in Figure 5 is endowed with a negative value of
the group velocity. As a consequence, this peak induces a wave packet consisting of
much longer oscillation cycles and capable of advancing upstream of a site where the
disturbance was given birth.

Absolute instability in the streamwise direction

Thus, the upstream moving modulated signals are brought about by the interaction
of the Tollmien-Schlichting wave and G rtler vortex eigenmodes. Centrifugal forces
create vortical disturbance structures elongated, in keeping with (29b,c), in the
streamwise direction. The surface curvature provides support to centrifugal forces which
become zero if a flat plate is under consideration. The Blasius boundary layer mostly
studied both theoretically and experimentally so far experiences no wave / vortex
interaction and shows no absolute instability in the streamwise direction. However, the
first evidence of upstream influence exerted by the vortical disturbances from a concave
insert mounted on an otherwise flat plate can be traced back to remarkable wind-tunnel
tests by Mangalam, Dagenhart, Hepner & Meyers (1985). v

One feature of the first dispersion curves in Figure 5 is worth noting beforehand

to obtain reliable results from computations. The size of tiny positive peaks of R ((D Gl)
in the upper portion of the loops in the shape of these curves is much less compared to the
magnitude of the global maximum of R (co Gl) positioned on the right-hand lobes. Hence

a need for filtering out the high-frequency oscillation cycles becomes obvious if both the
downstream moving highly-modulated signal and the upstream-advancing wave packet
are intended to be computed simultaneously. The plots in Figures 6,7 are drawn using this
numerical technique. They correspond to two dispersion curves in Figure 5, one for an
incompressible boundary layer and the other for a boundary layer in the high subsonic
Mach number regime. The upstream propagating pulsations predicted above theoretically
solely from the notion of the negative group velocity are clearly seen in both plots. The
frequency of pulsations grows with the Mach number increasing. The absolute instability
in the streamwise direction may provoke earlier transition to turbulence.
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Conclusions
The present study leads to the following conclusions:

e Unsteady spiral-type G rtler vortices make up a low-frequency side band in the
- Tollmien-Schlichting wave spectrum.

e Absolute instability in the streamwise direction provoked by the wave / vortex
interaction is inherent in any low Mach number as well as high Mach number
subsonic boundary layers.

e Tiltering out the high-frequency oscillation cycles is required to compute
simultaneously the wave packets moving downstream as well as advancing upstream,
against the oncoming flow.

Future work: thermal problem

Temperature disturbances remained mostly beyond the scope of traditional
hydrodynamic stability. However, understanding the reasons for the heat transfer
coefficient to increase is of prime importance in the turbine blade design. This provides a
strong impetus to extent the stability analysis to thermal wave packets propagating
upstream. The complex-valued amplitude of the forced temperature pulsations introduced
in much the same way as in (23) and (24) obeys an inhomogeneous Airy equation

&FT - 22
—F-YL=ik, 31)

subject to the limit condition

T 4 as|f> (32)
at the upper reaches of the viscous near-wall sublayer and the boundary condition
T=0atY=0 (33)

at the solid surface held at constant temperature. Here ¥, stands for the normal-to-wall

velocity component coming from the above solution for the viscous near-wall sublayer. A
transformation to the G rtler spectral range

1

(kD)7 7 (34)

3 1 3
v.=e"(xD7v,g T=¢t'

preserves the boundary-value problem intact.

Some recent results based on a solution to this problem are submitted by
Bogdanova-Ryzhova & Ryzhov to ASME Turbo EXPO 2003. As it follows from (31),
the temperature oscillations in the upstream moving wave packets may have even larger

11



amplitude than the normal-to-wall velocity (and pressure) if the length of G rtler vortices
grows without bounds as k5 — 0.
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Cooled HP turbine rotor blade
(courtesy of Rolls-Royce plc, from
S.L. Dixon, 1998).

Figure 1. Typical shape of a turbine blade.

Sketch of the streamwise vortices developing on a
concave wall due to the Gortler instability mechanism.

Figure 2. Steady vortical disturbances in the classical boundary layer.
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Spiral vortices

Figure 3. Unsteady vortical disturbances in an interactive boundary layer.
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Figure 4. Complex frequencies for incompressible boundary layer.
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Figure 5. Complex frequencies for compressible boundary layers in different subsonic
regimes.
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Figure 6. Downstream and upstream propagating disturbances in an incompressible
boundary layer.
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Figure 7. Downstream and upstream propagating disturbances in compressible boundary

layer in the high subsonic Mach number regime.
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